Генная терапия в спортивной медицине

                               

НОВОСТИ:

     

Наука клонирования суперзвезд

Gene therapy may heal sports injuries

Gene therapy and tissue engineering repair sports injuries

 

 

 

 

 

НАУКА КЛОНИРОВАНИЯ СУПЕРЗВЕЗД ("MSNBC", США)

Прогресс в медицине может быть использован спортсменами в корыстных целях

Роджер О`Нил / Roger O'Neil, 19 февраля 2002

Пока одна мышь отдыхает, другая продолжает бегать по дорожке, потому что ей ввели измененный ген для того, чтобы она стала сильнее. Неужели следующими на очереди будут спортсмены?

Солт-Лэйк-Сити 15 февраля. - На зимних олимпийских играх повсюду видны высокие технологии, от спортивного снаряжения до мер безопасности XXI века. Следующий рубеж - это человеческий организм, манипуляции с генетическими данными спортсменов. И это не фантастика, как может показаться на первый взгляд.

Революция в области терапии артритов началась с экспериментов на коленных суставах коз. Благодаря нижним конечностям лабораторных мышей, произошел прорыв в лечении мышечных заболеваний.

Однако официальные лица, отвечающие за проведение Олимпийских игр, выражают озабоченность, что достижения медицины в области лечения болезней могут быть использованы спортсменами, жаждущими рекордов и готовыми пойти на нечестные манипуляции со своими генами и клетками ради того, чтобы стать, к примеру, самыми быстрыми конькобежцами или лыжниками.

"Истинный спортивный дух будет утрачен навсегда, - считает Тэд Фридманн (Tedd Friedmann), директор Центра генетической терапии и Калифорнийского университета в Сан-Диего. - И спорт превратится в состязания в области по биоинженерии.

Вспомните "супермышь". Когда ей вводят генетически измененный ген, мышь вырастает большой и приобретает мощную мускулатуру нижних конечностей. При этом в случае повреждения разорванная мышечная ткань заживает быстрее, не оставляя рубцов.

Разорванные мышцы могут положить конец спортивной карьере

"Это позволит очень быстро полностью восстановиться после травмы", - говорит доктор Ли Суини (Lee Sweeney) из университета Пенсильвании.

И это касается не только травм. В результате занятий спортом изнашиваются кости и суставы, об этом тоже нужно помнить. Бронзовому призеру Тиму Гебелю (Tim Goebel) 21 год. При этом у него уже развился артрит от постоянных толчков при прыжках. Снимок поврежденного хряща коленного сустава показывает, насколько ткань разрушена и изношена. Однако теперь ученые научились выращивать новые хрящи, благодаря манипуляциям на стволовых клетках взрослого человека. Пока это делается на козах, но в скором времени эту практику предполагаются распространить и на людей.

"Это делается исключительно с целью помочь пациентам избавиться от болей, страданий и потенциальной опасности раннего завершения карьеры", - заявляет доктор Элан Смит (Alan Smith) из Osiris Therapeutics.

Безусловно, это будет помогать при травмах. Однако официальные лица, отвечающие за проведение Олимпийских игр, убеждены, что здоровые спортсмены будут использовать генетически трансформированные гены и клетки для достижения незаслуженных успехов.

Беспокойство по поводу того, что новые достижения науки ставят под угрозу будущее спорта, настолько велико, что, что в следующем месяце планируется провести встречу специалистов по генетическому и лекарственному тестированию. Их задачей будет выработать медицинскую этику в области генной инженерии в спорте, поскольку на сегодняшний день не существует тестов для выявления суперзвезды, накачавшей себя генетическими коктейлями.

 Опубликовано на сайте inosmi.ru: 20 февраля 2002, 12:54
Оригинал публикации: The science of building superstars

 

 

Gene therapy may heal sports injuries

 

By IRA DREYFUSS -- The Associated Press   February 28, 2000

WASHINGTON -- An injection of a therapeutic gene may someday help to heal an athlete's badly damaged muscle, fractured leg or blown-out knee, researchers say.

 In lab animals, gene therapy has knit together broken bones and made injured muscles grow stronger. Preliminary human trials already have begun, and experts believe these experimental findings will develop into treatments.

 "I think the chances are extraordinarily high," said Dr. R. Rodney Howell, a University of Miami School of Medicine professor who is president of the American College of Medical Genetics, a professional group. "It's going to take a while, but I think the chances are overwhelming it will work."

 Therapies may start to show potential for sports injuries in 2 to 5 years, researchers say. "These are very complicated studies," Howell said. "The time frame will be substantial. It's not going to be next week or next year."

 Much of the work centers on growth factors, proteins that the body produces to help various tissues grow. Because genes direct the production of growth factors, researchers are working on ways in which to add copies of these genes.

 One method is to genetically engineer a virus, such as one that causes the common cold, by removing the illness-causing material and replacing it with a growth factor-triggering gene. The virus is then inserted into a test animal, where the new gene implants the growth factor gene in the cells.

 Another method is to remove cells from the test subject, add growth factor-triggering gene to those cells and inject them back into the subject. At this point the virus method is more efficient, said an article in The Physician and Sportsmedicine, a medical journal. But the engineering of a patient's own cells could have greater potential, said researcher Johnny Huard of the University of Pittsburgh, one of the paper's authors.

 Certain cells, known as muscle-derived stem cells, seem to be progenitors of bone, tendon, ligament or muscle, and can be directed to grow into one or the other, Huard said. Substances called bone-muscle genetic protein seems to act as the switch, but it's not yet known how the body decides which way to direct the stem cells to develop, he said.

 However, in lab experiments, Huard and other researchers have been able to heal tissue.

 Using muscle-derived stem cells, Huard's lab was able to almost completely heal broken skulls in mice. Researchers at the UCLA School of Medicine healed broken mouse leg bones with similar stem cells derived from marrow. And at Harvard University, using growth factor carried on a virus, researchers were able to make mice show progressive increases in muscle mass.

 If the research lives up to its potential, the main benefit for athletes could be healing of joints, and bones that are too badly damaged to heal correctly under current therapies, researchers said. Ligaments and tendons especially tend to grow back slowly, so a boost from gene therapy could speed the process.

 Muscle heals anyway, so gene therapy might only be needed for very bad injuries, said Dr. Jay R. Lieberman of UCLA. However, muscle-restoring techniques could benefit people with muscle-wasting diseases such as
muscular dystrophy.

 Techniques to inject genes for anti-inflammatory proteins could treat joint diseases such as
arthritis.

 Scientists such as Howell think that findings from disease-focused studies could carry over to benefit athletes. "The basic mechanisms by which they work is very similar," he said.

 Human trials into possible benefits for athletes are only in the early stages, and the studies are aimed at establishing that the therapies are safe.

 Risks include the possibility that genetically engineered cells could grow out of control, leading to
cancer.

 Another possibility is that viral cells used to carry the gene may infect the recipient with viral disease. One patient died in a recent gene therapy trial.

 And for athletes, there is the additional issue of doping. Genes that normally occur in the body might not be found in tests by athletic organizations, leading to the possibility that the winning athlete might be simply the best-engineered.

 

 

___________________________________________________________________________________________________________________________

 

Gene therapy and tissue engineering repair sports injuries

For A.M. Release
Fri., March 17, 2000

For more information, contact:

Joanne Swanson

(847)384-4035

swanson@aaos.org

 

ORLANDO, Fla. - Whether you are a weekend athlete or a sports professional, most people eventually are faced with an injury. Traditional treatments of surgery or a cast followed by lengthy rehabilitation are being replaced with gene therapy that reengineers damaged muscles, cartilage and ligaments.

Speaking today during a media briefing at the 67th annual meeting of the American Academy of Orthopaedic Surgeons, a panel of orthopaedic surgeons explained the new research on gene therapy and tissue engineering. Moderated by Freddie Fu, MD, the panel included Jay Lieberman, MD; Johnny Huard, PhD; and Jacques Menterey, MD.

The term "sports injury" conjures up thoughts of professional athletes being helped off the field during the big game. In reality, most sports injuries involve less famous people participating in activities like an informal softball game with friends after school or an organized football league with co-workers. Between 10 and 55 percent of all injuries are sustained in sports.

In addition, the longer, healthier lives of average Americans also means that orthopaedic surgeons treat a large number of senior citizens. An estimated 53,000 people ages 65 and older were treated in U.S. hospital emergency rooms in 1996. That's a 54 percent increase from 1990.

The basic treatment for many injuries is called "R.I.C.E." which stands for Rest, Ice, Compression and Elevation. Treatment for more significant injury includes surgery, strengthening exercises, support braces or a cast and medications. Many of these treatments result in scar tissue in the injured muscle. Serious injuries may result in cartilage defects that require a total joint replacement.

"We're using basic scientific research to develop new orthopaedic therapies that use genes, stem cells and tissue engineering to create improved healing in sports injuries of all kinds," said Dr. Huard. "With a typical muscle injury, muscle regeneration begins within 2 weeks. Often the healed muscle has a lot of scar tissue that causes complications for professional and recreational athletes. Our research shows that by adding gene therapy to the treatment program, muscles heal with less scar tissue, creating a near complete recovery of the muscle."

There are three stages of the healing process of muscles. The first is the destruction phase in which swelling, bruising and pain take place. In the second phase, the repair phase, regeneration of the muscle and blood vessels begins and scar tissue is developed. The final remodeling phase occurs when the regenerated muscle matures and contracts into its final form.

The development of improved methods of transferring genes into cells has created new options to aid in the healing capacity of musculoskeletal tissues like muscles, ligaments and cartilage.

Gene therapy also has the potential to revolutionize the treatment of bone loss problems related to fractures that don't heal, hip and knee replacements and spinal fusion. Orthopaedic surgeons use cells harvested in a patient's body, and the modified cells are placed back in a particular area of the body to create a biological response in that site. Once the gene is in place, it produces a response that stimulates the healing process.

"The more we understand about the biology of bone formation, cartilage repair and tendon healing, the more we will be able to develop the appropriate tissue engineering and gene therapy strategies to treat specific injuries," said Dr. Lieberman. "Gene therapy has the potential to allow orthopaedic surgeons to harness or stimulate the body's inherent healing potential."

While gene and cell therapies are still in the research stages, researchers expect it to be available for use as a standard treatment within a decade.

In the first year of the United Nations-declared Bone and Joint Decade (2000-2010), the Academy is holding its annual meeting, March 15-19, at the Orange County Convention Center, Orlando, Fla.

 

 

 

 



Сайт управляется системой uCoz