Данное направление в спортивной медицине изучает вопросы, связанные с влиянием генов на здоровье спортсменов в зависимости от характера физической деятельности.
Простой пример: атлет с генотипом D/D по гену АКФ (предрасположенность к бегу на короткие дистанции и к тяжелой атлетике) профессионально занимается бегом на средние дистанции или гиревым спортом (к бегу на средние дистанции и гиревому спорту наиболее предрасположены атлеты с генотипом I/I по гену АКФ). Кроме того, что у него будут проблемы с выработкой выносливости, его сердце, генетически не адаптированное к нагрузкам на выносливость будет чрезмерно гипертрофироваться (у атлетов с генотипом I/I гипертрофия будет умеренной). Как постулирует современная спортивная медицина, чрезмерная гипертрофия миокарда является одним из грозных факторов риска заболеваний сердца. Примером тому, ранняя инвалидизация и преждевременная смерть некоторых спортсменов.
Другой пример: если спортсмены
занимающиеся видами спорта, связанными с хронической травматизацией
(бокс, футбол, хоккей, регби, американский футбол и др.) имеют эпсилон-4 аллель
гена аполипопротеина, в этом случае, у них возрастает
риск заболевания болезнью Альцгеймера и другими поражениями головного мозга.
|
|
В ходе исследования, на протяжении пяти лет проводившегося
сотрудниками Эдинбургского университета, было
установлено, что мозговые травмы, включая полученные во время спортивных состязаний
и тренировок, могут иметь для некоторых людей самые негативные последствия. И
определяются эти последствия... особенностями генетической структуры каждого
конкретного человека. Так, к примеру, изменения в структуре протеина Apoe-4,
изучение роли которого в процессе восстановления деятельности нервной системы
являлось основной целью шотландских исследователей, могут привести к развитию
слабоумия и существенно затруднить задачу медиков при лечении травм головы.
Как выяснили ученые, такая мутация протеина Apoe-4 - вне зависимости
от того, что именно стало ее причиной, - характерна для почти трети населения
Великобритании, а у людей, предрасположенных к развитию болезни Альцгеймера,
это число увеличивается до 80 %. Следовательно, в случае получения сколько-нибудь
серьезной травмы мозга, у всех этих людей могут возникнуть серьезные проблемы как во время курса лечения, так и с точки зрения пост-травматических последствий.
Поэтому медики настоятельно рекомендуют таким людям не увлекаться чрезмерно
теми видами спорта и прочей активности, в которых велик риск получения мозговых
травм, и вообще тщательнейшим образом оберегать себя как от физических, так и
от психических "потрясений".
Genetic Susceptibility to Brain Injury in
Sports: A Role for Genetic Testing in Athletes. Barry D. Jordan MD, MPH
THE PHYSICIAN AND SPORTSMEDICINE - VOL 26 - NO. 2 -
FEBRUARY 98
Technological
advances in molecular biology during the next millennium may cause an explosion
of genetic information about athletes' predisposition to illness and injury.
Recent discoveries about a possible genetic predisposition to brain injury in
boxers may be the tip of the iceberg, with far-reaching implications for
members of the sports medicine community.
Evidence for Inherited Susceptibility
Chronic
traumatic brain injury (CTBI), which occurs primarily amongretired boxers after
long exposure to the sport, is also known as dementia pugilistica, chronic
traumatic encephalopathy, or "punch-drunk"syndrome. The condition
represents the cumulative long-term neurologicconsequence of repetitive
concussive and subconcussive blows to thehead. A milder form of CTBI can occur
in American football, ice hockey, rugby, soccer, or any sport associated with
traumatic brain injury. Clinically, CTBI is characterized by slurred speech,
gait ataxia, memory impairment, behavior and/or personality changes,
parkinsonism, and/or incoordination (1-6). On postmortem examination, CTBI
shares several neuropathologic features with Alzheimer's disease (7-11). Recent
evidence suggests that apolipoprotein E epsilon-4 (apo E-e4), a susceptibility
gene for late-onset familial and sporadic Alzheimer's disease (12,13), may also
be associated with an increased risk of CTBI in boxers (14). In a survey of 30
boxers, those who harbored an apolipoprotein E epsilon-4 allele and had high
exposure to the sport (more than 12 professional bouts) exhibited greater
neurologic dysfunction than those without an apolipoprotein E epsilon-4 allele.
In addition, all the boxers who were severely impaired possessed an
apolipoprotein E epsilon-4 allele. Also supporting the hypothesis of a genetic
predisposition to the neurologic effects of boxing, Teasdale et al (15) have
since reported a significant association between apolipoprotein E epsilon-4
polymorphism and outcomes following acute traumatic brain injury in a nonboxing
population. In a prospective evaluation of 89 patients admitted to a
neurosurgical unit, 17 (57%) of 30 patients who had the apolipoprotein E
epsilon-4 allele experienced an unfavorable outcome (death, a vegetative state,
or severe disability). The same was true of only 16 (27%) of 59 patients who
did not have an apolipoprotein E epsilon-4 allele.
Weighty Decisions Ahead
Our
recent finding of this genetic predisposition to brain injury has implications
not only for the medical regulation of boxing and other contact sports but also
for our awareness of a need to better understand the interaction between
genetic susceptibility and environmental triggers. With future advances we may
be able to identify genes that predispose athletes to other sports-related
injuries. For example, we may be able to identify those who are at increased
risk of rupture of the anterior cruciate ligament. With such possibilities in
mind, the medical community is confronted with new possibilities for helping
patients as well as with serious ethical and moral concerns about the role of
genetic testing. There are certain advantages to knowing of a genetic
susceptibility to injury. Identifying athletes who are susceptible to a
specific injury would give physicians the opportunity to advise them of the
potential risk. Such an athlete could elect to participate in a different
sport. Other options might include modification of training or playing
techniques, use of specialized safety equipment, rule changes, or more rigorous
medical surveillance and health status monitoring. Furthermore, the
identification of genes for sports injury susceptibility may also provide a
basis for novel treatment strategies, such as gene therapy. Despite these
potential benefits, identifying athletes who have a genetic predisposition to
injury in sports raises important ethical and legal issues. First, the
knowledge must be kept confidential. Public knowledge of an athlete's genetic
risk could compromise his or her well-being and livelihood. For example,
knowledge of a predisposition to disease could limit an athlete's negotiating
power and/or limit theability to obtain medical or disability insurance.
Furthermore, an athlete's own knowledge of this predisposition could impose a
significant psychological and emotional burden. Complicating all of this is
uncertainty about the reliability of genetic testing in sports: It may be very
difficult to determine the positive predictive value of a genetic test and to
quantify the amount of athletic exposure that will trigger a pathobiologic
response.
A Future for Genetic Testing?
Advances
in molecular biology will undoubtedly expand our understanding of the interactions
between inherited disease susceptibility and environmental precipitants. Any
future application of such scientific knowledge in the domain of sports
medicine must be accompanied by scientific validation, ethical responsibility,
moral integrity, and appropriate regulatory policies. Genetic testing may be
the wave of the future, but because of uncertainty about genetic and
environmental interactions, its role remains to be delineated.
References
1.
Jordan BD: Chronic neurologic injuries in boxing, in Jordan BD (ed): Medical
Aspects of Boxing. Boca Raton, Fla, CRC Press, 1993, pp 177-185
2.
Mendez MF: The neuropsychiatric aspects of boxing. Int J Psychiatry Med
1995;25(3):249-262
3.
Roberts AH: Brain Damage in Boxers: A Study of the Prevalence of Traumatic
Encephalopathy Among Ex-professional Boxers. London, Pittman, 1969
4.
Jordan BD: Neurologic injuries in boxing, in Jordan BD, Tsairis P, Warren RE
(eds): Sports Neurology, ed 2. Philadelphia, Lippincott-Raven, to be published
5.
Jordan BD: Dementia pulgilistica, in Folstein MF (ed): Neurobiology of Primary
Dementia. Washington, DC, Association for Research in Nervous and Mental
Disease: American Psychiatric Press, to be published
6.
Critchley M: Medical aspects of boxing, particularly from a neurological
standpoint. BMJ 1957;(February 16):357-362
7.
Corsellis JA, Bruton CJ, Freeman-Browne D: The aftermath of boxing. Psychol Med
1973;3(3):270-303
8.
Roberts GW, Allsop D, Bruton C: The occult aftermath of boxing. J Neurol
Neurosurg Psychiatry 1990;53(5):373-378
9.
Uhl GR, McKinney M, Hedreen JC, et al: Dementia pugilistica: loss of basal
forebrain cholinergic neurons and cortical cholinergic markers, abstracted. Ann
Neurol 1982;12(1):99
10.
Tokuda T, Ikeda S, Yanagesawa N, et al: Re-examination of ex-boxers' brains
using immunohistochemistry with antibodies to amyloid beta-protein and tau
protein. Acta Neuropathol (Berl) 1991;82(4):280-285
11.
Dale GE, Leigh PN, Luthert P, et al: Neurofibrillary tangles in dementia
pugilistica are ubiquitinated. J Neurol Neurosurg Psychiatry 1991;54(2):116-118
12.
Saunders AM, Strittmatter WJ, Schmechel D, et al: Association of apolipoprotein
E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease.
Neurology 1993;43(8):1467-1472
13.
Corder EH, Saunders AM, Strittmatter WJ, et al: Gene dose of apolipoprotein E
type 4 allele and the risk of Alzheimer's disease in late onset families.
Science 1993; 261(5123):921-923
14.
Jordan BD, Relkin NR, Ravdin LD, et al: Apolipoprotein E epsilon4 associated
with chronic traumatic brain injury in boxing. JAMA 1997;278(2):136-140
15. Teasdale GM, Nicoll JAR, Murray G, et al:
Association of apolipoprotein E polymorphism with outcome after head injury.
Lancet 1997:350(9084):1069-1071 Dr. Jordan is adjunct associate professor of
psychistry at the Charles R. Drew University of Medicine and an instructor of
neurology at the Uersity of California at Los Angeles (UCLA) School of
Medicine. Address correspondence to Barry D. Jordan, MD, Charles R. Drew
University of Medicine, 1621 E 120th St, MP-19B, Los Angeles, CA 90059, e-mail
to Bjordan@UCLA.edu.
ACE
AND DISEASES
Many studies have attempted to determine whether
specific ACE genotypes are associated with certain traits or diseases. For
instance, Rigat et al. found that the insertion/deletion polymorphism accounted
for nearly half the variance of serum ACE levels, with deletion homozygotes (DD
genotype) having significantly higher serum ACE levels. Subsequently, Cambien
et al. demonstrated that the DD genotype is more frequent in patients who had a
myocardial infarction (MI) and thus constitutes a risk factor for MI,
particularly in those patients considered to be at low risk (i.e. without
hypertension, high plasma lipid levels, or smoking history). Further analysis
revealed that, in patients with previous MI, there was increased frequency of
the DD genotype among those with a parental history of MI. This suggested that
genetic variation at the ACE locus may be involved in the risk for MI. In
another study, Raynolds et al. found an increased frequency of the DD genotype
in patients with ischemic or dilated cardiomyopathy, indicating that the ACE DD
genotype may be a risk factor for heart failure associated with these types of
cardiomyopathy. An increased frequency of the DD genotype has also been
associated with left ventricular hypertrophy (LVH), coronary artery disease,
familial hypertrophic cardiomyopathy (HCM), and a family history of sudden
cardiac death (SCD). In addition, the DD genotype has been found to influence
the phenotypic expression of left ventricular hypertrophy in HCM.